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Abstract. This paper presents proceedings of ER-Force, the RoboCup
Small Size League team from Erlangen located at Friedrich-Alexander-
University Erlangen-Nürnberg, Germany.
It presents our advances in trajectory based path planning. We extend
existing methods to efficiently use target velocities and more complex
robot models. This is done by improving on the standard method of gen-
erating bang-bang trajectories by using an alternative representation of
the trajectory space. This advance allows for more flexible path planning
algorithms.

Fig. 1: ER-Force robot design from 2019
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1 Introduction

In this ETDP, we will present our new pathfinding algorithm we developed over
the course of the last year and successfully used during the RoboCup 2019. We
omit any discussion on hardware changes as we are still in the construction phase
of the robots described in our last years ETDP [1]. Apart from the new pathfind-
ing algorithm, our success at the RoboCup 2019 can be largely attributed to
improvements which we have already discussed in previous ETDPs.

2 Path Planning

In the following section, we describe our new trajectory based path planning
algorithm. After a short introduction and problem statement, we describe our
trajectory generation method based on an alternative trajectory representation.
This representation is refined until it is usable in practice. We then detail the
advantages of this method over the more traditional bang-bang trajectories.
Finally, we show how to use this trajectory generation method in practice in a
complete path planning algorithm.

2.1 Introduction

In order to explain the design decisions that we made regarding our new path
planning algorithm, we start by presenting our old approach, its advantages and
disadvantages as well as additional constraints.

Until last year, we used two-dimensional Rapidly-exploring Random Trees
(RRTs). These are also commonly employed in the league [2,3,4]. We presented
a detailed overview of our usage of this approach in [5]. Briefly summarized, the
path planning is executed independently for each robot 100 times per second.
This limits the accumulated computation time to less than 10 ms for all robots.
Every frame, the strategy generates a new set of obstacles to avoid as well as a
target position and velocity. The orientation of the robots is controlled separately
as the movement direction and orientation of SSL robots are largely independent.
It will not be discussed in this paper. The RRT generates a continuous path
avoiding all obstacles from the initial robot position to the target. This path
generation happens only in position space and does not consider velocities. This
path is then processed to be as short as possible. In a second step, a trajectory is
constructed close to the generated path taking into account the robots velocity
and acceleration limitations. As the construction does not work when the robots
current velocity leads away from the desired trajectory, we brake as fast as
possible if this case occurs.



While we have used this approach successfully during many RoboCups, it
still has some limitations inherent to its design:

• The RRT approach minimizes the length of the path to the target position.
For slow velocities, when the robot can brake in a fraction of a second,
distance traveled is a good proxy for the time spent driving. When the robots
are capable of higher velocities, faster paths can usually be constructed by
other means. With higher velocities, traveling longer distances can lead to
earlier arrivals when obstacles are present1.

• As the RRT operates in position space only, all obstacles have to be sta-
tionary. Introducing moving obstacles like robots or the ball would require
knowledge of the robots position for each given point in time. However, tim-
ing information is only computed in the post-processing step once the path
is fully assembled.

• We currently employ a velocity controller on our robots, as described in our
2018 ETDP [6]. Moving position control to the robots would allow for better
integration of sensor data and more precise driving. However, a position
controller on the robots fundamentally clashes with the RRT approach. As
the RRT disregards the robots physical limitations, the post-processing is
needed for a feasible path. This is repeated every frame and acts as a position
controller itself, interacting poorly with a robot based approach.

• The time to the target can not easily be estimated due to the initial velocity
of the robot. As the post-processing of the path operates only in one di-
mension along the path, any initial velocity that strongly deviates from the
desired path direction can not properly be accounted for.

• With the RRT, we experienced more collisions than we are comfortable with.
To avoid collisions with fast moving robots, we had to drastically enlarge
their obstacles in the current driving direction of the robots. For goal shots,
we created a large triangular obstacle between both goal posts and the ball.
These obstacles hindered our ability to reach the desired target quite often. A
solution for this is the usage of moving obstacles whose position is dependent
on the current time. These kinds of obstacles are not possible with a 2D RRT.
Dynamic Safety Search [7] might present an alternative solution, but we did
not implement and test it so far.

All of these limitations can already be overcome with a standard trajectory
based path planning using bang-bang trajectories. TIGERs Mannheim showed
in their last years ETDP [8] how to apply this to SSL robots. We also give a
short introduction to this technique in 2.2.

1 Please disregard relativistic velocities



However, this standard approach does not have all the features of our RRT
based path planning, which we would like to keep if possible. Therefore, any new
path planning algorithm would have to incorporate the following features:

• If the robot finds itself in an obstacle it must take the shortest or fastest
route out of it.

• If the target point itself is inside an obstacle or otherwise not reachable, the
robot should drive as close as possible to the target without intersecting any
obstacles.

• Our current approach additionally offers to specify a target velocity. It is not
mandatory to reach the velocity at the target position. Instead, the velocity
is interpreted as a maximum:

Definition 1. Let d be the normalized direction vector the robot reaches the
target position with and m the given maximum velocity vector. The maximum
scalar velocity at the target position is then the length of the projection of m
onto d: m ◦ d.

The path planning algorithm should use this maximum speed to decrease
the necessary time to the target if possible. We specify this target velocity
when catching a ball or manmarking opponents.

As an alternative method, many of the described RRT disadvantages could be
mitigated by using a 4-dimensional RRT, sampling in the joint position-velocity
space. However, the necessary computation time would likely become prohibitive
for real time applications with quickly changing obstacles.

2.2 Previous Works

As previously mentioned, TIGERs’s trajectory based path planning [8] can al-
ready solve many of the problems we have been encountering with the RRT. As
their approach is quite similar to our proposed version we will provide a short
recap.

The path planning is based on the ability to generate feasible trajectories
reaching a given position while also adhering to the robots physical limitations.
The general approach is to select a set of intermediate positions. Trajectories are
generated from the robot to these positions, and then from from the intermediate
positions to the target position. The trajectories are then evaluated based on
their time and possible collisions with obstacles. The best trajectory is used for
controlling the robot.

TIGERs use 2D bang-bang trajectories to compute these feasible trajectories.
Bang-bang trajectories are not optimal in respect to the trajectory time, but they
provide a computationally feasible approximation. To compute a 2D bang-bang
trajectory reaching a desired destination, the typical algorithm separates the
problem into two 1D sub-problems in x and y direction. Using a binary search,
the distribution of the acceleration and maximum velocity to the directions x and
y is found such that the time of both 1D trajectories becomes sufficiently similar,



for example within one millisecond [9]. A 1D bang-bang trajectory is either
always accelerating, decelerating or is at the maximum allowed velocity. These
can be easily computed given the desired distance and acceleration. Therefore,
2D trajectories are typically computed with a target position and acceleration
as inputs.

This method has the advantage of being easy, reliable and fast. However, the
approach is rather constrained in the ability to match the robots physical accel-
eration capabilities. Without unreasonable effort, it is only possible to specify
exactly one acceleration and exactly one deceleration parameter for the whole
trajectory. Additionally, the velocity at the target position is required to be zero.

Otherwise, this could lead to discontinuities in the trajectory time. Assume
the trajectory generation only to be a function mapping acceleration to the
time for a given target state in one dimension. This function is discontinuous
when introducing target velocities. Therefore, there exist scenarios without an
acceleration distribution ax for which both one-dimensional functions yield the
same value. The existence of such a value ax is necessary to construct a valid
2D trajectory. Figure 2 shows an example without a valid intersection.
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Fig. 2: The times for different acceleration distributions of 1D bang-bang trajec-
tories in x and y direction. The acceleration in x direction is a ·ax, in y direction
a ·

√
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x is used. The scenario has been chosen to demonstrate the existence
of the discontinuity in the trajectory time. Note that not every combination of
parameters exhibits such a discontinuity.



2.3 Trajectory Generation

Trajectory Spaces Without loss of generality, we will assume the initial posi-
tion of the trajectory to be at (0, 0) in the following section. The target velocity
is required to be zero. Non-zero target velocities will be discussed in a later sec-
tion. The initial velocity at the beginning of the trajectory will be denoted by
vi.

The main contribution of this ETDP is the introduction of an alternative
trajectory generation method. It combines both the advantages of our RRT
approach as well as those of TIGERs’s solution [8]. As previously explained,
the standard method of generating 1D bang-bang trajectories uses the desired
distance and acceleration as inputs. However, there are also alternative ways to
define and compute these trajectories. It is sufficient to know two of the three
parameters time, distance and acceleration to uniquely define a 1D bang-bang
trajectory. Our proposed method uses the time and acceleration.

Our 2D bang-bang trajectories are therefore parameterized by a given time
and acceleration distribution ax. In order to simplify the presentation, this sec-
tion uses an acceleration a = 1. This simplifies the acceleration in x direction to
ax. As usual, the maximum acceleration should be used whenever possible, the
acceleration ay in y direction can be calculated using

√
a2
x + a2

y = 1 (1)

As the time is already given as a parameter, it is no longer necessary to use
bisection to find a valid trajectory.

Using just time and acceleration distribution as parameters, it is not possible
to reach every position on the field. For each dimension, the input time can be
divided into two parts, the time necessary to fully brake given the acceleration
in that dimension tb and some additional time. We define these additional times
as the possibly different values t+x and t+y in the x and y dimensions respectively.
To be able to reach every point on the field, it must be possible to use t+x and
t+y to drive both a positive and negative additional distance. See Figure 3 for
three velocity/time diagrams of different bang-bang trajectories demonstrating
this additional time. Two additional bits of information are necessary to specify
the type (positive/negative) of this additional distance for each direction. Since
equation 1 describes a circle, we can substitute the acceleration distribution with
an angle. This results in a trajectory generation function that takes time and
an angle as inputs. From this point onward, t and γ will denote these param-
eters for the trajectory generation. The 1D acceleration can now be computed
as ax = |sin(γ)| and ay = |cos(γ)|. The sign of the trigonometric functions de-
fine whether the trajectory should travel a positive or negative distance in the
respective direction. Note that the angle does not precisely correspond to the
actual direction the trajectory will lead to, this issue will be addressed later.
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Fig. 3: Speed/time diagrams for one dimensional bang-bang trajectories. They
show braking only (3a), using the additional time to drive in the positive direc-
tion (3b) or negative direction (3c). The time used for fully braking is highlighted
in blue while the additional time is depicted in brown.

The trajectory generation still has the problem that some inputs do not
correspond to an actual trajectory. There are two cases for which the inputs are
invalid:

1. It is not possible to fully brake if the given time t is too low: t < |vi|
a .

This case can be handled easily by avoiding input values smaller than the
minimum braking time |v

i|
a or always adding the minimum braking time to

t.

2. It is possible to fully brake in the given time, but not with the acceleration
distribution specified by γ. This is true for |v

i
x|
ax

> t or |v
i
y|
ay

> t. For any given
t, there exist four of these invalid regions of γ, around 0, π/2, π and 3/2π.

A convenient way to handle these cases is to transform γ such that the
invalid regions from point 2 disappear. The size of the regions around 0 and
π can be computed by finding γx such that |vi

x|
a·|sin(γx)| = t. This is solved by

|γx| = sin−1( v
i
x

t·a ). The equivalent computation can then be performed in y di-
rection with γy. Eliminating the invalid regions can be visualized as cutting the
corresponding angles out of a circle and re-assembling the remaining parts to
a smaller, roughly spherical, shape. A visualization of this process is shown in
Figure 4. The new angle without invalid regions is then defined as γ̂. To compute
γ from γ̂, we first check in which quadrant γ̂ lies. We then linearly interpolate
the γ̂ to the corresponding valid segment of γ.



Fig. 4: The valid segments of γ in the outer circle and their reassembly into a
smaller continuous shape. The colors serve as indicators for the same trajectory.

This transformation is not just convenient for having a total function. Ad-
ditionally, the space of generated trajectories is continuous, as the trajectories
for γ = γx and γ = −γx are the same. We show this fact for the invalid region
around 0, the other regions work analogously. The trajectories in y direction for
γx and −γx are the same since cos(γx) = cos(−γx). This is contrasted by the
x direction, where sin(γx) = −sin(−γx) holds. While the resulting sign value
differs in the x direction, it is not used, as by definition γx is the angle such that
the trajectory only consists of braking to a velocity of zero. Therefore, the sign is
only important if the additional time t+x is nonzero. As a result, the trajectories
at γx and −γx are exactly the same.

To illustrate the continuity of the trajectories for a given time, Figure 5 shows
the target position of all trajectories reachable in a given time in yellow as well
as selected trajectories in green.

Trajectories Reaching a Given Position The last section showed that the
trajectory generation parameterized by time and angle can be well defined and
continuous. Up until this point, we discussed trajectories traveling to unspecified
positions. In contrast, path planning algorithms require trajectories traveling
exactly to a specified position. In order to arrive at a given position, we need to
determine the corresponding values of t and γ̂. The required search algorithm
operates in two dimensions and is therefore too complex to use binary search.



Fig. 5: All positions reachable in the same time are shown in yellow. The initial
robot speed is set to 3 m/s. Selected trajectories to these points are shown in
green.

Instead, we propose an alternative iterative algorithm. As initial trajectory
parameters, we compute an approximate time and angle. The algorithm will
find the correct solution regardless of the choice of initial parameters, but a
better heuristic will speed up the search. The time and angle are then repeatedly
updated until either a trajectory with the desired target position is found or too
many iterations have passed. The second case rarely happens but is necessary
as a fail-safe.

To improve the search algorithm, we introduce additional geometric interpre-
tation of the angle. First, consider the following fact: for a fixed time, the final
positions for the trajectories at γ̂ = 0 and γ̂ = π have the same x coordinate as
sin(γx) = sin(π − γx). A similar fact can be observed for the y coordinate at
γ̂ = π/2 and 3/2π. We define pc as the point at these x and y coordinates. Fig-
ure 6 shows this point inside the shape of all positions reachable in a fixed time.
While it may not exactly be at the geometric center, it is fairly close. Geometric
angles of final positions of trajectories can now be computed in reference to pc.
By construction, the geometric angles at γ̂ = 0, π/2, π, 3/2π exactly correspond to
γ̂. As the final positions vary continuously and roughly uniformly, the angles in
between also approximately match their respective geometric angles. Measure-
ments shows that the average difference between these two angles for realistic
scenarios is low. The input angle can therefore be used as an approximation for
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Fig. 6: The position pc inside the shape of all positions reachable in the same
time. Some angles and the initial velocity are additionally marked.

the target position angle. This allows for better heuristics for updating the input
angle in the iterative algorithm.

pc could be computed by generating two trajectories with input angles 0
and π/2. This expensive computation can be avoided by realizing that pc can
be computed as vi · t2 with vi being the initial velocity. This holds for all t,
independent of a.

For updating the time and angle, we use the following heuristics: Let pt be
the desired target position and pf the final position produced by the current
time ti and angle γi. We update ti as

ti+1 = ti + (|pt − pc| − |pf − pc|) · f · h(ti, γi) (2)

where f is the update strength. We modify f accordingly to compensate over-
shooting the distance. h is a heuristic function used to speed up the search (see
our open source code for more detail). The angle is updated in a similar fashion
using the geometric angle between pt, pc and pf .

Using these heuristics like these for updating the time and angle, this search
terminates in surprisingly few steps, depending on the target precision. If the
trajectory does not exactly reach the target position, it can be slightly stretched
in such a way that it does so precisely. This slightly distorts the acceleration
at different points on the trajectory, but the distortion effect is negligible as



long as the distance traveled on the trajectory is significantly longer than the
position error. As a result, a higher precision is necessary for shorter distances
than for longer ones. We usually use a target precision of one centimeter for
longer trajectories.

To analyze the efficiency of our search algorithm, we ran the search for varying
inputs. For different precisions, we tested random initial velocities and distances.
The average number of iterations for a trajectory was recorded and can be seen in
Table 1. It can be seen that the necessary number of iterations is not significantly
higher than the number typically used for the classical binary search algorithm
(around 10). As the work done in each iteration is similar, the performance of
our proposed algorithm is on-par with the previous one.

Precision [m] 0.01 0.001 0.0001
Iterations 8.1 11.3 14.5

Table 1: Average number of iterations necessary to construct a trajectory ending
at most precision meters from the target position.

Advantages While we have established that our algorithm can compute tra-
jectories quickly and reliably, we have not yet detailed the advantages over the
classical approach given the increased complexity.

The first advantage is that target velocities can be used. Different semantics
for target velocities are possible, including:

• No target velocity: The velocity at the target position must be zero. This is
the option used in most approaches that were discussed so far.
• Exact target velocity: The generated trajectory must have the exact tar-
get velocity specified by the input. This should not be used for the target
position of the whole trajectory, as slight variations in the robot speed or
position will result in very different trajectories. See Figure 7 as an example
of this phenomenon. However, exact target velocities can be used for inter-
mediate trajectories, as the position and velocity of intermediate points can
be updated every frame.
• Maximum target velocity: This is the semantic we used in our RRT based
path planning algorithm, using the projection of the target velocity on the
trajectory direction at the target position, as stated in Definition 1.

Other semantics are possible in principle but we found the listed ones to be
sufficient.



Fig. 7: Two different trajectories with the same (exact) target velocity and
slightly different initial velocities.

All of these options can be achieved with the proposed algorithm. The 1D
bang-bang trajectory generation can be easily modified to include these features.
The space of trajectories will stay continuous and the search algorithm can re-
main basically unchanged. While all formulas like for example the size of the
invalid angle segments have to be slightly adjusted to include the target veloc-
ity, these changes are trivial. Figure 8 shows an example of a trajectory with and
without a maximum target velocity. In this case, the target velocity is used to
decrease the necessary time to the target. While the regular straight trajectory
takes around 1.6 seconds, the trajectory using the target velocity pointing down
only needs 1.4 seconds. If the target velocity pointed up, the trajectories would
be the same, as no speedup can be achieved.

Fig. 8: Two different trajectories with (green) and without (yellow) a maximum
target velocity of 1.5 meters per second pointing down.



The second advantage is that we can match the acceleration profile to that
of real robots. Real SSL robots have a varying maximum possible acceleration at
different velocities and orientations [9]. While the minimum possible acceleration
of any robot configuration can be used, this may leave a lot of acceleration
potential unused.

We propose to adapt the trajectory to the actual acceleration profile as fol-
lows. After generating a trajectory with a time and angle inside the search al-
gorithm, a second pass over the trajectory is performed. The acceleration at all
points along the trajectory is modified to match the robots acceleration profile.
Changing the acceleration will modify the resulting distance traveled as well as
the trajectory time. Since the target position is not a parameter of the trajectory
but rather searched for in the surrounding search algorithm, this modification of
the distance is compensated by the search algorithm. We propose two methods
to adapt the acceleration. The first method subdivides the trajectory into short
time intervals. A constant acceleration is assumed for these intervals to compute
their distances. A second approach takes all segments with constant acceleration
in both dimensions and analytically solves the matching integral over the accel-
eration to obtain the segments distance. The first approach will always work but
consume significantly more computational power, while the second one may not
always be feasible.

2.4 Sampling Strategy

TIGERs described a strategy for sampling trajectories to find a valid path to the
target while avoiding obstacles [8]. Their approach is fully compatible with the
trajectory generation described in this paper, although it might not make full
use of its potential. As target velocities are possible with our trajectory genera-
tion, we use an alternative sampling strategy. It operates in the four dimension
space spanned by exact target velocity in two dimensions, time and angle. We
heuristically select a number of points from this space and generate two trajec-
tories. The first trajectory can be computed with the target velocity, time and
angle. It travels from the robot to some unspecified position on the field. The
second trajectory then picks up from there and travels to the target position.
While this approach needs to search for paths in a higher dimension than the
approach by [8], it also has the potential for trajectories of a higher complex-
ity. As an example for this complexity, Figure 9 shows the optimal trajectories
around a defense area with our approach compared to [8]. The trajectory sam-
pling method employed by [8] generates a far longer path with a duration of
3.12 seconds. Our proposed sampling method generates a trajectory far closer
to the defense area which would take around 2.65 seconds to drive. However,
this difference might not be too relevant in practice, as such situations do not
occur too often in real SSL games. In addition, as soon as the robot reaches the
next corner of the defense area, the sampling approach of [8] will find a more
reasonable path as a lower trajectory complexity is necessary. This can lead to
similar drive times for both algorithms. The major advantage of our approach
lies in the earlier knowledge of the correct arrival time.



(a) Sub-optimal trajectory with the sam-
pling approach of [8]

(b) Faster trajectory found by our sam-
pling algorithm

Fig. 9: Trajectories around the defense area for different sampling methods

3 Conclusion

In this ETDP we presented our new path planning algorithm with capabilities
like target velocities and accelerations depending on robot configuration. This
algorithm was of great help during the RoboCup in Sydney. However, some chal-
lenges remain unsolved. While the path planning algorithm works as intended,
the choice of obstacles for robots and the ball has a strong influence on the re-
sulting trajectory quality. This is especially true for opponent robots, which can
not easily be predicted. For example, collisions with opponent robots are some-
times hard to avoid when their obstacles are not large enough to compensate for
unpredictable changes in speed or direction.

The new algorithm also allows us to test approaches that were previously
impossible. We plan on testing a ball interception method embedded inside the
path planning algorithm, essentially using a moving target position. This could
present a novel application of this type of path planning algorithms.
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